

| $\mathbf{2}$ | | -0.21 and -4.8 | 3 B3 only after using quadratic formula
 Or B2 for one value correct
 or for $-0.20871 . . ~ a n d ~$
 $-4.7912 . . ~ r o t ~$
 Or M1 for $\frac{-5 \pm \sqrt{\left(5^{2}-4 \times 1 \times 1\right)}}{2 \times 1}$
 or for $(x+2.5)^{2}-6.25+1$ oe | B2 or M1 available after using
 complete the square |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3	(a	0.5 to 0.6 inclusive -3.5 to -3.6 inclusive	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Or SC1 for (0.5 to 0.6, -3.5 to -3.6) or (-3.5 to $-3.6,0.5$ to 0.6)	Throughout Q17 do not accept (x, y) coordinate point answers
	(b)	$\begin{aligned} & \text { Correct graph of } y=x+2 \\ & 1.2 \text { to } 1.3 \\ & -3.2 \text { to }-3.3 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	After M1: SC1 for (1.2 to 1.3, -3.2 to -3.3) or (-3.2 to $-3.3,1.2$ to 1.3) After M0: SC2 for their 2 correct x values ± 0.1 Or SC1 for their 1 correct x value ± 0.1	FT only for straight line graph through $(0,2)$ and with + ve or -ve gradient. Curve may be extended for FT SC marks

4		-3.73 and -0.27	3	B2 for one value correct		
				Or SC2 for -0.26794919 rot and -3.7320508 rot both seen Or M1 for Or for $(x+2)^{2}-4+1[=0]$	$-4 \pm \sqrt{\left(4^{2}-4 \times 1 \times 1\right.}$	Both rot to at least 1 decimal place

| $\mathbf{6}$ | (a) | $(x+5)(x-3)$ final answer | $\mathbf{2}$ | B1 for $(x \pm 5)(x \pm 3)$ seen | |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| | (b) | $-5,(+) 3$ | FT1 | FT from their 2 brackets only | |
| | (c) | $\frac{x+5}{x+3}$ final answer | $\mathbf{2}$ | B1 for $(x+3)(x-3)$ seen | |

7	(a)	5 and -5	3	B2 for one of these Or M1 for $x^{2}=25$ Or B1 each for embedded answers	
	(b)	$[a=][\pm] \sqrt{\frac{S}{2}-2 b c} \text { or } \sqrt{\frac{S-4 b c}{2}}$ as final answer	3	nfww M1 for $2 a^{2}=S-4 b c$ or for $\frac{S}{2}=2 b c+a^{2}$ M1 for $\frac{S}{2}-2 b c=a^{2}$ or $\frac{S-4 b c}{2}=a^{2}$ or FT M1 for $[a=][\pm] \sqrt{\frac{S}{2}-2 b c}$ oe or FT ; award last M1 at stage of final answer Or M2 for complete correct inverse flow diagram and M1 for final answer SC1 if no working, and final answer appears with just one error	M1 for each of FT correct, constructive steps leading to answer, eg last M1 FT their $a^{2}=\ldots$ The square root symbol must extend to include at least the start of the second term, if there is one, and below the fraction line For mixture of fractions and decimals or triple decker fractions etc, award M0 where they first occur (unless they sort them later) then ft

8	(a)	1.6 or $\frac{8}{5}$ oe	3	M1 for $10 x-15$ soi or for $2 x-3=\frac{1}{5}$ oe M1 for $10 x=16$ or FT their first step M1 for answer FT their $a x=b$, with $a \neq 1$ or 0 and $b \neq 0$	Award M3 only if answer correct Only FT for last mark if M1 has been earned already
	(b)	$2 a(3 a-5)$ as final answer	2	M1 for $2 a(\ldots$.$) or 2\left(3 a^{2}-5 a\right)$ or $a(6 a-10)$	Condone omission of final bracket; accept inclusion of multiplication symbols
	(c)	-6	1		

| $\mathbf{1 0}$ | $\mathbf{(a}$ | $(x+3)^{2}-8$ | 2 | $\mathbf{M 1}$ for $\left(x+3^{2}\right)$ soi | |
| :--- | :--- | :--- | :---: | :---: | :--- | :--- |
| | (b) | $\left(x+3^{2}\right)=8$
 $x+3=[\pm] \sqrt{8}$
 -0.17 and -5.83 | M1FT
 M1FT | FT from their $(x+a)^{2} \pm b$
 \pm not necessary for this mark
 B2 for one of the values correct or two
 values correct but not to 2dp | a and b integers |

